A SPACE-TIME FINITE ELEMENT METHOD FOR THE EXTERIOR STRUCTURAL ACOUSTICS PROBLEM: TIME-DEPENDENT RADIATION BOUNDARY CONDITIONS IN TWO SPACE DIMENSIONS

Author(s):  
L. L. THOMPSON ◽  
P. M. PINSKY
2009 ◽  
Vol 2009 ◽  
pp. 1-17
Author(s):  
Ali R. Soheili ◽  
J. Naghipoor ◽  
S. A. Ahmadian

A gradient weighted moving finite element method (GWMFE) based on piecewise polynomial of any degree is developed to solve time-dependent problems in two space dimensions. Numerical experiments are employed to test the accuracy and effciency of the proposed method with nonlinear Burger equation.


2021 ◽  
Vol 147 (2) ◽  
pp. 305-348
Author(s):  
Massimo Frittelli ◽  
Anotida Madzvamuse ◽  
Ivonne Sgura

AbstractIn this paper we consider a coupled bulk-surface PDE in two space dimensions. The model consists of a PDE in the bulk that is coupled to another PDE on the surface through general nonlinear boundary conditions. For such a system we propose a novel method, based on coupling a virtual element method (Beirão Da Veiga et al. in Math Models Methods Appl Sci 23(01):199–214, 2013. https://doi.org/10.1051/m2an/2013138) in the bulk domain to a surface finite element method (Dziuk and Elliott in Acta Numer 22:289–396, 2013. https://doi.org/10.1017/s0962492913000056) on the surface. The proposed method, which we coin the bulk-surface virtual element method includes, as a special case, the bulk-surface finite element method (BSFEM) on triangular meshes (Madzvamuse and Chung in Finite Elem Anal Des 108:9–21, 2016. https://doi.org/10.1016/j.finel.2015.09.002). The method exhibits second-order convergence in space, provided the exact solution is $$H^{2+1/4}$$ H 2 + 1 / 4 in the bulk and $$H^2$$ H 2 on the surface, where the additional $$\frac{1}{4}$$ 1 4 is required only in the simultaneous presence of surface curvature and non-triangular elements. Two novel techniques introduced in our analysis are (i) an $$L^2$$ L 2 -preserving inverse trace operator for the analysis of boundary conditions and (ii) the Sobolev extension as a replacement of the lifting operator (Elliott and Ranner in IMA J Num Anal 33(2):377–402, 2013. https://doi.org/10.1093/imanum/drs022) for sufficiently smooth exact solutions. The generality of the polygonal mesh can be exploited to optimize the computational time of matrix assembly. The method takes an optimised matrix-vector form that also simplifies the known special case of BSFEM on triangular meshes (Madzvamuse and Chung 2016). Three numerical examples illustrate our findings.


1999 ◽  
Author(s):  
Lonny L. Thompson ◽  
Runnong Huan

Abstract Asymptotic and exact local radiation boundary conditions first derived by Hagstrom and Hariharan are reformulated as an auxiliary Cauchy problem for linear first-order systems of ordinary equations on the boundary for each harmonic on a circle or sphere in two- or three-dimensions, respectively. With this reformulation, the resulting radiation boundary condition involves first-order derivatives only and can be computed efficiently and concurrently with standard semi-discrete finite element methods for the near-field solution without changing the banded/sparse structure of the finite element equations. In 3D, with the number of equations in the Cauchy problem equal to the mode number, this reformulation is exact. If fewer equations are used, then the boundary conditions form uniform asymptotic approximations to the exact condition. Furthermore, using this approach, we formulate accurate radiation boundary conditions for the two-dimensional unbounded problem on a circle. Numerical studies of time-dependent radiation and scattering are performed to assess the accuracy and convergence properties of the boundary conditions when implemented in the finite element method. The results demonstrate that the new formulation has dramatically improved accuracy and efficiency for time domain simulations compared to standard boundary treatments.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Sign in / Sign up

Export Citation Format

Share Document